
NASA-TM-]i226.2

/ L' f
j , , • •

L i ¸

f

One Year with an iPSC/860

E. Barszcz*

Report Number: RNR-91-001

2 January 1991

N/ A
National Aeronautics and
Space Administration

Ames Research Center
Moflett Field, California 94035

ARC 275 (Rev Feb81)



One Year with an iPSC/860

E. Barszcz*

Report Number: RNR-91-001

2 January 1991

Abstract

This paper describes experiences over the past year with an the Intel iPSC/860, a

distributed memory MIMD parallel computer based on the Intel i860 floating point pro-

cessor. The system at NASA Ames Research Center has 128 nodes, and a theoretical

peak performance of over seven GFLOPS. This paper describes the system at Ames Re-

search Center, talks about system stability, compiler performance measured by the NAS

kernels, and results from a two-dimensional computational fluid dynamics application.

*Applied Research Office, NASA/Ames Research Center, Moffett Field, CA 94035.



One Year with an iPSC/860

Eric Barszcz

NASA Ames Research Center

Moffett Field, CA 94035

Abstract

This paper describes experiences over the past year

with an the Intel iPSC/860, a distributed memory

MIMD parallel computer based on the Intel i860 float-

ing point processor. The system at NASA Ames Re-
search Center has 128 nodes, and a theoretical peak

performance of over seven GFLOPS. This paper de-

scribes the system at Ames Research Center, talks

about system stability, compiler performance measured

by the NAS kernels, and results from a two-dimensional

computational fluid dynamics application.

Intel iPSC/860 System

In spring of 1989 DARPA and Intel Scientific Com-

puters announced the "Touchstone" project. This

project calls for the development of a series of proto-

type machines by Intel Scientific Computers, based on

hardware and software technologies being developed by
Intel in collaboration with research teams at CalTech,

MIT, UC Berkeley, Princeton, and the University of
Illinois. One of the milestones is the "Gamma" pro-

totype. On December 29, 1989, the Numerical Aero-

dynamic Simulation (NAS) Systems Division at NASA
Ames Research Center took delivery of one of the first

two Intel Touchstone Gamma prototypes. The system

is marketed commercially as the Intel iPSC/860 and

will be referred to as the iPSC/860 for the remainder

of the paper. For a review of early experiences with

the iPSC/860 at Ames Research Center and Oak Ridge

National Laboratory, see [1] and [5] respectively.

The iPSC/860 system is based on the 64 bit i860

microprocessor by Intel [6]. The i860 runs at 40 MHZ

(the initial system was delivered with 33 MHZ proces-

sors, which were upgraded to 40 MHZ). The theoretical
peak speed is 80 MFLOPS for 32 bit floating point and

60 MFLOPS for 64 bit floating point operations. There

are thirty-two 32-bit integer address registers, and six-

teen 64-bit floating point registers (which may be used

as thirty-two 32-bit floating point registers). Float-

ing point register 0 is hardware wired to zero. This

implies there are only fifteen 64-bit floating point reg-

isters that can hold non-zero values. The i860 also has

an 8 kilobyte data cache and a 4 kilobyte instruction

cache on-chip. The data path between cache and reg-
isters is 128 bits wide. The data path between main

memory and registers is a 64 bits wide.

The i860 has a number of features to facilitate high
execution rates. First of all, a number of important

operations, including floating point add, multiply, and
loads from main memory, can be pipelined. When

pipelined floating point operations are used, they are

segmented into three stages, and a new operation can

be initiated every 25 nanosecond clock period (except

for the 64 bit floating multiply instruction, which has

two stages and is initiated every other clock period).

Pipelined loads also are initiated every other clock pe-

riod due to the speed of the dynamic random access

memory (DRAM) used for main memory. Another ad-
vanced feature is that the i860 is a "super scalar" chip;

multiple instructions can be executed in a single clock

period. For example, a memory fetch, a floating point

add and a floating point multiply can all be initiated

in a single clock period.

A single node of the iPSC/860 system consists of the

i860, eight megabytes (MB) of 70 nanosecond DRAM,
and hardware for communication to other nodes. For

every 16 nodes, there is also a unit service module to

facilitate node diagnostics. The iPSC/860 system at

NASA Ames consists of 128 computational nodes. The

theoretical peak performance of this system is approx-

imately 7.3 GFLOPS on 64 bit data.

The 128 nodes are arranged in a seven dimensional

hypercube using the direct connect routing module and

the hypercube interconnect technology of the iPSC/2

[7]. The point to point bandwidth of the interconnect
system is 2.8 MB/sec per channel, the same as the

iPSC/2. However the latency for message passing is
reduced from about 350 microseconds to about 90 mi-

croseconds.

Following Bomans and Roose [4] we model the com-

munication time Tcomm by a least squares fit of the



Computer
System
iPSC/2

iPSC/860

Length
(bytes)
< 100
> 100
< 100
> 100

Latency
(p sec)

350

660

90

180

Time/word

(_ sec)
1.60

2.88

1.50

2.88

Table 1: Linear Regression Messing Passing Parame-
ters

data according to the model

Tcomm(k) -- tstartup + k * tsend

where k is the number of 8 byte words, tstartup is the

latency and t,,nd is the time per word. We obtain

the data in Table 1 (the iPSC/2 numbers are from

[4]). Thus we are able to confirm a considerably re-
duced message passing latency, which is mainly ob-

tained through the increased speed of the i860 on the

iPSC/860, when compared to the Intel 386/387 on the

iPSC/2. These results are also confirmed in [3].
Attached to the 128 computational nodes are ten

I/O nodes, each can store approximately 700 MB. So,

the total capacity of the I/O system is thus about 7

GB. These I/O nodes operate concurrently for high
throughput rates [8].

The complete system is controlled by a system re-

source module (SRM), which is based on an Intel 80386

processor. This system handles compilation and link-

ing of source programs, as well as loading the exe-

cutable code into the hypercube nodes and initiating
execution.

The software environment of the iPSC/860 system

is similar to that of the iPSC/2. The SRM runs Unix

System V/386 and features the usual networking fa-

cilities including support for the Network File System

(NFS). Also available is remote host software that al-
lows a user to compile and run from a workstation. The

individual nodes run a stripped down Unix-like kernel.

Fortran-77 and C compilers, as well as an assembler

and linker, are provided on the SRM. The system sup-

ports Fortran message passing commands for control
of multiple processor execution.

System Stability

The Touchstone Gamma prototype arrived at the

Numerical Aerodynamic Simulation (NAS) Systems
Division at NASA Ames Research Center on December

29, 1989. Technicians from Intel Scientific Computers
arrived on January 3, 1990 to install the system. On

January 5, 1990 the system was made available to se-

Month

January

February
March

April

May
June

July

August

September
October
November

December

Boards

Replaced
6
2

3

1

7

several

1

0

2

0
1

0

Table 2: Stability of

Avg. Reboots
per Day

2.45

2.87

N/A
2.41

N/A
0.90
1.88

1.56

the iPSC/860 System

lected users for testing.

The initial system was installed with 33 MHZ i860

chips, UNIX System V/386 Version 3.2 software, and

pre-production release 3.2 Fortran and C compilers
from Green Hills. From March 12-15, the system was

upgraded to 40 MttZ i860s.

Table 2 shows the number of node boards replaced

by month and the average number of reboots per day

by month. Typically, when a board was suspect, the

system administrator would switch the board to a new

position to see if it would be detected by diagnostics.

If so, then it would be replaced. If diagnostics did

not find it, the board would be marked as potentially
bad and wait for future complaints. Defective boards

are sent to Intel Scientific Computers for postmortem

analysis.

On the iPSC/860 system, users can reboot the sys-

tem. Occasionally, a user would reboot the system

when their code deadlocked due to programmer error

rather than a system problem or when they wanted

"clean" timings. So not all reboots shown in the ta-

ble are due to the system problems. January through

April are blank because we did not start collecting re-

boot information until May.

New operating system software was installed March

19th which eliminated some problems that had been

seen in user applications. It should be noted that not

all codes that run correctly on and iPSC/2 compile

and run on the iPSC/860. This includes some codes

developed on the simulator.

On April 16th, the direct connect module (DCM)

on the system resource module (SRM) failed and the
boot block on the SRM hard disk was destroyed. The

system was back up the next day and a second compile



enginewasinstalledonthe20thtoeasetheloadonthe
SRM.

In June,thesystembecameveryunstable.Someof
thiscouldbeduetotheinfluxofsummeremployeesus-
ingthemachine.Thenumberofuserswhohadlogged
inandattachedto nodeswentfrom17in Mayto 24in
June.

In earlyJulythesystemalsohadproblems.OnJuly

4th, the concurrent file system (CFS) was corrupted

and 'crestore' failed to work. The CFS was back up on

the 6th without any files being restored. Technicians

from Intel Scientific Computers arrived to stabilize the

system. A comment in the log for July 16th remarks

that the number of reboots is the same as for June,

even though the number of active users increased to
26.

The only major events of August are that production

3.2 software was installed on the 20th and the alpha

Fortran compiler from Portland Group was installed
on the 23rd.

In October, the version 1.1 Fortran compiler from

Portland Goup was installed. It is a major enhance-

ment to the system because it is a cross compiler. Local
users with a Sun 3 or Sun 4 can cross compiler and run

on the iPSC/860. This frees up cycles on the compile

engines for off site users and almost eliminates compil-

ing on the SRM.

Currently, there are 84 user accounts on the SRM, of

which 30 are activily being used. The average number
of cubes allocated at any time is 6-7. This is averaged

over 24 hours per day, 7 days per week. This is very

high considering that a maximum of 9 cubes can be
allocated at any time.

One of the problems that is still outstanding is that

the SRM crashes with "kernel panics". Nothing shows

up when diagnostics are run and it only seems to occur

when the system is heavily loaded.

Fortran Compiler Performance

The Fortran compiler provided on the initial NASA

Ames iPSC/860 system was the pre_production release

3.2 produced by Green Hills. Although it had some

scalar optimization options, it did not take advantage
of advanced features of the i860 such as the pipelining

of floating point operations and the utilization of mul-

tiple functional units. As a result, single node Fortran

performance was poor.

Some results of tests using the NAS Kernel Bench-

mark Program are shown in Table 3. This benchmark

assesses the performance of a computer on seven sub-

routines that are typical of computational fluid dynam-

ics computations done at NASA Ames [2]. The overall

single node performance figure of 0.98 MFLOPS (64

Program Error Time MFLOPS
MXM

CFFT2D
CHOLSKY

BTRIX

GMTRY

EMIT

VPENTA

3.43E-15

1.26E-13
2.90E-12

5.53E-13

8.63E-14

1.48E-16

1.19E-14

3.106

4.029

1.737

10.889

138.550

7.909

0.550

1.35

1.24

0.64

1.48

0.82
2.86

1.18

TOTAL 3.68E-12 166.770 0.98

Table 3: Single Node NAS Kernel Performance Results

bit), which is only about 1.6% of the theoretical peak
performance of the i860 on 64 bit data, indicates there

is considerable room for improvement.

These figures were obtained using the pre-production

3.2 compiler from Green Hills and compiled with no op-

timization. When compiled with all optimizations en-

abled (-OLM), the first three figures increased to 5.39
MFLOPS, 3.77 MFLOPS, and 1.71 MFLOPS, respec-

tively, but the remaining tests did not complete, most

likely due to a bug in the compiler. By comparison, the

overall single node performance figure on the Cray Y-

MP for this benchmark is 97 MFLOPS with no tuning

and 160 MFLOPS with minor tuning.

It is important to note that the average MFLOPS,

given on the last line in Table 3, is based on the total

number of floating point operations performed and the

total time to perform them and not by averaging the

MFLOPS rating for each kernel.

With the installation of production release 3.2 of the

operation system software in August, the kernels ran
about 17% slower than with the previous operation sys-

tem software. It turns out there are different alignment

requirements for the 80386 and i860 processors and

some sites have hybrid systems composed of i860 and

80386 compute nodes. When compiling for a homoge-

neous i860 system, the -Z618 compiler flag assumes the

proper alignment and most of the lost performance is

recovered. Also, the intrinsic libraries were changed.

The new libraries are "safe" (give correct results all

of the time) but slower, whereas the old libraries were
"unsafe" but faster.

Table 4 contains single node performance results of

the NAS Kernels when compiled using the Green Hills

Fortran compiler with -OLM and -Z618 compiler flags.

As one can see from the table, performance has im-

proved and all of the kernels now compile and run

With full optimization. There are two anomalies in the

table. First, some of the error values have changed.

This is probably caused by changes in the intrinsic li-



Program Error Time MFLOPS
MXM

CFFT2D

CttOLSKY

BTRIX

GMTRY

EMIT

VPENTA

3.43E-15

1.26E-13

2.88E-12

2.50E-13

2.60E-13

1.33E-15

8.45E-15

0.691
1.247

0.846

6.063

112.703

9.530

0.427

6.07

3.99

1.31

2.66

1.00

2.37

1.52

TOTAL 3.53E-12 131.507 1.24

Table 4: Single Node Green Hills Compiler Results (

-OLM -Z618)

Program Error Time MFLOPS
MXM

CFFT2D

CHOLSKY

BTRIX

GMTRY

EMIT

VPENTA

3.43E-15
1.26E-13

2.88E-12
2.50E-13

3.96E-14

1.33E-15

8.45E-15

0.619

1.023

0.948

5.640

116.422

8.851

0.455

6.78

4.87

1.17

2.85

0.97

2.55

1.43

TOTAL 3.31E-12 133.958 1.22

Table 6: Single Node Beta Portland Group Compiler

Results (-03)

Program Error Time MFLOPS
MXM

CFFT2D

CttOLSKY

BTRIX
GMTRY

EMIT

VPENTA

TOTAL

3.43E-15

1.26E-13

2.88E-12

2.50E-13

3.96E-14

1.33E-15

8.45E-15

3.31E-12

0.711

1.206

0.885

6.524

113.279

8.798

0.458

131.861

5.90

4.13

1.25

2.47

1.00

2.57
1.42

1.24

Table 5: Single Node Alpha Portland Group Compiler

Results (-02)

braries. Second, EMIT actually runs slower with the

new software and optimizations. When compiled with

-OLM and without -Z618 it takes only 8.656 seconds

compared to the 9.530 seconds given in the table. No

explanation for this is known at this time.

Included with the production release 3.2 was an al-

pha version of a Fortran compiler from Portland Group.

The compiler has three levels of optimization, no op-

timization specified, -02, and -03. Table 5 contains

single node performance results from the NAS Kernels

compiled with -02 compiler flag. Results using -02

and -03 compiler options are mixed, neither option is
best for all kernels with -02 having better overall re-

sults. As before, the overall MFLOPS rating is based

on the total number of floating point operations per-
formed and the total time for all kernels.

Comparing the Green Hills compiler to the Portland

Group compiler, there is no clear winner, they have the

same overall MFLOPS rating. Even if one weights the

MFLOPS ratings of all kernels equally, the Green Hills

compiler averages 2.70 MFLOPS per kernel compared
to the Portland Group average of 2.68 MFLOPS per

kernel. Looking at individual kernels, the Green Hill

compiler did better on 4 kernels, worse on 2 and tied

1. The only major difference is the Portland Group

compiler only compiles for the i860 where the Green

Hills compiler can generate code for the i860 and 80386.

In October, the beta version of the Portland Group

compiler was installed. It represented a major step

forward, not in terms of performance, but for system

usability. The Portland Group beta compiler is a cross

compiler. Programs can be compiled on Sun 3s and

Sun 4s and run on the iPSC/860. Combined with

NFS mounted workstations, cross compilation removes

much of the burden from the two 80386 compile engines

(includes the SRM).

Some of the potential and difficulty of compiling
for the i860 can be seen from the results of a dou-

ble precision dot product coded three different ways,

as shown in Figure 1. The top two curves are assembly
coded where one vector is loaded from cache and the

other from main memory. Curve three is also assembly

coded but bypasses cache and loads both vectors from

main memory. The fourth curve is a Fortran coded

dot product compiled, using the pre-production Green

Hills compiler in March, with full optimization.

When one vector is loaded from cache (i.e. the

top two curves), the dot product peaks at about 27

MFLOPS. As the vector length exceeds the cache size

(8 KB = 1000 words), performance drops off dramat-
ically. With a stride of two, only half of the data in

cache is usable and so performance drops off when the

vector length exceeds 512 words. The Fortran coded

dot product also shows the effect of cache and peaks
at 8.7 MFLOPS. Since the effect of cache is seen at a

vector length of 512 with a stride of 1, both vectors

must be loaded from cache implying the compiler does

not use pipelined loads. The current versions of the

Fortran compilers use pipelined loads.

Curve three is the assembly coded version that by-

passes cache. It remains flat after an initial startup and



DDOT -DoublePrecisionDotProduct

30_

25"1

15-1

lO-I

5-1

OI
0 5oh lo_ 15'oo

Vector Length

200O

Figure 1: Double Precision Dot Product.

runs about 13 MFLOPS independent of vector length.

In fact, it is the fastest dot product for vectors longer
than 1500.

From the above results, it is clear that the compiler

does not yet take advantage of all of the advanced fea-
tures of the i860. Certainly there is much work to be

done on the Fortran compiler to enable it to effectively

utilize these features but it will be difficult or impos-

sible for the compiler to always implement the best

algorithm.

Multiprocessor Application Performance

In this section, performance of ARC2D, a compu-

tational fluid dynamics (CFD) program that has been

ported to the Intel iPSC/860 at NASA Ames, is dis-

cussed and analyzed. This version of ARC2D solves

2-D Euler equations based on the diagonal form of the

Beam and Warming implicit approximate factorization

algorithm [9] and is capable of treating general 2-D ge-
ometries in either time accurate mode or accelerated

non-time accurate steady-state mode. It was ported to

the iPSC/860 by Sisira Weeratunga, a CSC contractor

to the NAS Systems Division at Ames Research Center

who also provided the information for this section.

Due to less stringent stability bounds and the con-

sequent ability to obtain solutions which require fine

grid spacing for numerical resolution, an implicit time

integration technique is implemented in ARC2D. Al-

though time differencing can be either first or second
order accurate, only the former is required if steady
state solutions are of interest.

The diagonalized form of the 2-D Euler equations has

scalar tridiagonal or pentadiagonal inversions in place

of block tridiagonal or block pentadiagonal inversions,

without sacrificing the accuracy of the steady-state so-

lution. In order to overcome the numerical instabil-

ity due to nonlinear interactions, artificial dissipation

terms are added to the implicit scheme. The nonlin-

ear artificial dissipation model chosen is a one in which

second and fourth order dissipation are combined with
appropriate coefficients to produce a scheme with good

shock capturing capabilities [10]. A linearized form of

the artificial dissipation model is added to the diagonal

factors, which necessitates the use of scalar pentadi-

agonal solvers. This produces an efficient, stable and

convergent form of the implicit factored algorithm for

steady state solution of 2-D Euler equations.

The concurrent implementation of the ARC2D algo-

rithm is achieved by decomposing the computational

domain into rectangular subdomains, and mapping

them onto the hypercube using a 2-D binary reflected

Gray code. Pipelined Gaussian elimination is then used

to solve the systems of equations in both directions.

Pipelined Gaussian elimination with rectangular

subdomains is found faster than in-processor Gaussian

elimination with stripwise subdomains followed by a

transpose to rearrange the data for solution in the sec-
ond dimension.

Global exchanges are required for computing the 2-
norm of the residual of the continuity equation and the

number of supersonic points in the flow field, which are

used to monitor convergence.

Performance of the resulting implementation is sum-

marized in Table 7 [12]. For each problem size the
following is given, seconds per time step, MFLOPS

based on the CRAY hardware performance monitor,

efficiency where Efficiency(%) = ((MFLOPS on one

processor)/N.(MFLOPS on g processors))* 100, and

single node performance of a CRAY-2 and a CRAY-

YMP on the same problem. As the problem size in-

creases, 64 nodes of the iPSC/860 performs as well as
or better than the CRAY-2 and achieves over 70% of

the performance of the CRAY-YMP on the 320x128

problem.

Conclusion

With the Intel iPSC/860 system, multi-GFLOPS

peak floating point performance is now available on

a MIMD hypercube computer system. Initial perfor-

mance results indicate that a significant fraction of this

peak performance may be obtained on some special-

ized applications, particularly those that can be imple-

mented with algorithms and techniques that possess a

high degree of data locality [11]. For the larger class of

applications that do not possess high degrees of data

locality, performance rates will be limited by both the

restricted bandwidth between the processor and main

memory on the individual nodes and by the restricted



Problem
Size

(192x64)

(256x80)

(320x128)

Sec./Step
MFLOPS
Efficiency(%)
Sec./Step
MFLOPS
Efficiency(%)
Sec./Step
MFLOPS
Efficiency(%)

1
4.1
3.0

InteliPSC/860
No.ofProcessors

2 418116 321642.1 1.11 0.61 0.35 0.22 0.14
5.9 11.2 20.3 35.6 56.7 86.4

98 92 83 73 58 44

3.49 1.82 0.98 0.54 0.33 0.20

6.0 11.4 21.0 39.0 64.0 101.0

99 95 88 81 67 53

3.62 1.90 1.02 0.57 0.34

11.6 22.0 41.0 73.0 123.0

97 92 85 76 64

Table 7: ARC2D Performance

CRAY-2

0.15

82.0

0.26

79.0

0.48

86.0

CRAY-YMP

0.08

163.0

0.13

161.0

0.24

172.0

communication bandwidth between nodes. For both

classes of applications, performance rates for the time

being are considerably lower than ideal due to imma-
ture Fortran compilers.

On the other hand, such limitations are typical of

an young system. Hopefully future developments, both
hardware and software, will alleviate some of these bot-

tlenecks and permit broad classes of scientific compu-

tations to run at supercomputer speeds.

Acknowledgment

The author acknowledges the valuable information

and assistance provided by Victor Jackson and David
Scott of Intel Scientific Computers, and Leigh Ann

Tanner of NAS for keeping the machine running and

access to her system logs.

References

1. Bailey, D. H., et al., "Performance Results on the

Intel Touchstone Gamma Prototype", Proceedings

of the 5th Distributed Memory Computing Con-

ference, April 1990, p. 1236- 1245.

2. Bailey, D. H., and Barton, J. T., "The NAS Ker-

nel Benchmark Program", NASA Technical Mem-

orandum 86711 (August 1985).

3. Bokhari, S., "Communication Overhead on the In-

tel iPSC-860 Hypercube", ICASE Interm Report

10 (May 1985).

4. Bomans, Luc and Roose, Dirk, "Benchmarking

the IPSC/2 IIypercube Multiprocessor", Concur-

rency, vol. 1 (1989), p. 3 - 18.

5. Heath, M. T., Geist, G. A., and Drake J. B.,

"Early Experience with the Intel iPSC/860 at

.

.

.

.

10.

11.

Oak Ridge National Laboratory", ORNL Techni-

cal Memorandum 11655 (September 1990).

i860 64-Bit Microprocessor Programmer's Refer-
ence Manual, Intel Corporation, Santa Clara, CA,

1990.

IPSC/2 User's Guide, Intel Scientific Co., Beaver-

ton, OR, 1989.

Lou, Z. C., "A Summary of CFS I/O Tests",
NASA Ames Research Center, Applied Research

Office Report RNR-90-020 (October 1990).

Pulliam, T. tI. and Chaussee, D. S., "A Diago-

nal Form of an Implicit Approximate Factorization

Algorithm", JournM of Computational Physics,

vol. 39 (1981), p. 347 - 363.

Pulliam, T. H., "Efficient Solution Methods for

the Navier-Stokes Equations", Lecture Notes for

The Von Karman Institute for Fluid Dynamics

Lecture Series: Numerical Techniques for Viscous

Flow Computation in Turbomachinery Bladings,

Jan. 20- 24, 1986.

Scott, D. S., Castro-Leon, E., and Kushner, E.

J., "Solving Very Large Dense Systems of Linear

Equations on the iPSC/860", Proceedings of the

5th Distributed Memory Computing Conference,

April 1990, p. 286 - 289.

12. Weeratunga, S., Private Communication.


